Real-Time Location, Correction and Segmentation Algorithm based on Tilted License Plate

Author:

Gao Zhiyong1,Xiang Jianhong2

Affiliation:

1. Rui'an School, Wenzhou Polytechnic, Wenzhou 325000, China

2. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

Background: Vehicles have become one of the most important means of transportation, and license plate is the only identifying mark of vehicles. License plate recognition technologies are being applied to a series of occasions, such as supervising road traffic violations, recovering stolen vehicles, monitoring wanted vehicles, and dispatching special vehicles. The license plate tilt phenomenon caused by various reasons has brought great trouble to its own recognition. Objective: How to identify tilted license plates efficiently and accurately becomes the key to the automatic management of a large number of vehicles. Therefore, a real-time location, correction and segmentation algorithm based on the tilted license plate is proposed in this paper. Methods: Firstly, an end-to-end deep convolutional neural network (CNN) is proposed for the location detection of the tilted license plate. The developed CNN is optimized by the most advanced RefineDet algorithm. By improving the object detection module, the representation ability of the CNN for small features and the accuracy of the detector are improved, so as to make the location regression and label prediction of the detected object more accurate. Secondly, the optimized perspective transformation algorithm is applied to correct the tilted license plate. According to the vertices coordinates of the bounding box detected by our CNN, the license plate area cropped out from the original image has a certain tilt angle, and the perspective transformation algorithm achieves the correction. Finally, digital image processing technology is used to segment the characters of license plates. Results: The experimental results in the Chinese City Parking (CCP) dataset show that the proposed algorithm exhibits location average precisions improvements of 2.4-5.4% over the other algorithm. Conclusion: The proposed algorithm achieves high-accuracy correction and real-time segmentation.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3