Development of Experimental Teaching Platform for In-Wheel Motor Electric Vehicle On-Board Testing

Author:

Wang Pan1ORCID,Fan Xiaobin1,Zhu Shuaiwei1,He Shuwen1,Chen Xinbo2

Affiliation:

1. School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, P.R. China

2. China North Vehicle Research Institute, Beijing 100072, China

Abstract

Background: The on-board test system is the key technology of in-wheel motor electric vehicles, which plays a vital role in the safety of the driver and the efficient operation of the vehicle. Methods: Based on the requirements of the current in-wheel motor electric vehicle experiment teaching content, this research develops an in-wheel motor electric vehicle experimental teaching platform based on Matlab/Simulink and LabVIEW to meet the current needs of the in-wheel motor electric vehicle experiment teaching content. Results: The vehicle speed, sideslip angle, and road adhesion coefficient can be accurately estimated using the vehicle test platform developed in the article. Conclusion: With accurate experimental results, the functionality, value, and teaching value of the in-wheel motor electric vehicle experimental teaching platform were fully verified.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3