SVM Ensemble-based Noise Detection Method for Image Denoising

Author:

Jia Xiaofen1,Wang Chen1,Guo Yongcun2,Zhao Baiting1,Huang Yourui1

Affiliation:

1. School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China

2. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China

Abstract

Background: To preserve sharp edges and image details while removing noise, this paper presents a denoising method based on Support Vector Machine (SVM) ensemble for detecting noise. Methods: The proposed method ISVM can be divided into two stages: noise detection and noise recovery. In the first stage, local binary features and weighted difference features are extracted as input features vector of ISVM, and multiple sub-SVM classifiers are integrated to form the noise classification model of ISVM by iteratively updating the sample weight. The pixels are divided into noise points and signal points. In the noise recovery stage, according to the classification results of the previous stage, only the gray value of the noise point is replaced, and the replacement value is the weighted mean value with the reciprocal of the quadratic square of the distance as the weight. Results: Finally, the replacement value at the noise point and the original pixel value of the signal point are reconstructed to get the denoised image. Conclusion: The experiments demonstrate that ISVM can achieve a noise detection rate of up to 99.68%. ISVM is highly effective in the denoising task, produces a visually pleasing denoised image with clear edge information, and offers remarkable improvement compared to that of the BPDF and DAMF.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Defect Identification Method of Cable Termination based on Improved Gramian Angular Field and ResNet;Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering);2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3