A Review on Machine-learning Based Code Smell Detection Techniques in Object-oriented Software System(s)

Author:

Kaur Amandeep1ORCID,Jain Sushma1ORCID,Goel Shivani2ORCID,Dhiman Gaurav3ORCID

Affiliation:

1. Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala, India

2. Department of Computer Science, Bennett University, Noida, India

3. Department of Computer Science, Government Bikram College of Commerce, Patiala, India

Abstract

Background: Code smells are symptoms that something may be wrong in software systems that can cause complications in maintaining software quality. In literature, there exist many code smells and their identification is far from trivial. Thus, several techniques have also been proposed to automate code smell detection in order to improve software quality. Objective: This paper presents an up-to-date review of simple and hybrid machine learning-based code smell detection techniques and tools. Methods: We collected all the relevant research published in this field till 2020. We extracted the data from those articles and classified them into two major categories. In addition, we compared the selected studies based on several aspects like code smells, machine learning techniques, datasets, programming languages used by datasets, dataset size, evaluation approach, and statistical testing. Results: A majority of empirical studies have proposed machine-learning based code smell detection tools. Support vector machine and decision tree algorithms are frequently used by the researchers. Along with this, a major proportion of research is conducted on Open Source Softwares (OSS) such as Xerces, Gantt Project and ArgoUml. Furthermore, researchers pay more attention to Feature Envy and Long Method code smells. Conclusion: We identified several areas of open research like the need for code smell detection techniques using hybrid approaches, the need for employing valid industrial datasets, etc.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3