Transformer Fault Diagnosis Based on an Improved Sine Cosine Algorithm and BP Neural Network

Author:

Xiong Yan1,Cheng Jiatang1,Feng Zhichao1

Affiliation:

1. The College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, China

Abstract

Background: The operation state evaluation and fault location of the transformer is one of the technical bottlenecks restricting the safe power grid operation. Methods: A hybrid intelligent method based on the Improved Sine Cosine Algorithm and BP neural network (ISCA-BP) is developed to improve the accuracy of transformer fault diagnosis. First, the cloud model is introduced into the Sine Cosine Algorithm (SCA) to determine the conversion parameter of each individual to balance the global search and local exploitation capabilities. After that, six popular benchmark functions are used to evaluate the effectiveness of the proposed algorithm. Finally, based on the dissolved gas analysis technology, the improved SCA algorithm is employed to find the optimal weight and threshold parameters of the BP neural network, and the transformer fault classification model is established. Results: Simulation results indicate that the improved SCA algorithm exhibits strong competitiveness. Furthermore, compared with the BP neural network optimized by the Sine Cosine Algorithm (SCA-BP) and BP neural network, the ISCA-BP method can significantly improve the diagnostic accuracy of transformer faults. Conclusion: The proposed intelligent method can provide a valuable reference idea for transformer fault classification.

Funder

Scientific Research Foundation of the Guilin University of Technology

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3