A Comprehensive Review of Various Isolated DC-DC Converters Topologies Associated with Photovoltaic Applications

Author:

Supriya J.1,Rajashekar J.S.2

Affiliation:

1. Electrical and Electronics Engineering, Dayananda Sagar College of Engineering, Bangalore, India

2. Electronics and Instrumentation Engineering, Dayananda Sagar College of Engineering, Bangalore, India

Abstract

Abstract: Environmentally friendly renewable energy sources showed substantial development over the most recent couple of years. Compared with other RES, extracting power from solar has become the most beneficial and profitable source because of its environmental friendly nature. In the process of extraction of power, DC-DC converters has given conspicuous interest due to their broad use in various applications. Although a lot of advancements, research work, and continuous tuning of circuits of photovoltaic systems, still remarkable efficiency and stability has not been achieved yet. In this paper, exhaustive research and development of DC-DC converters are identified and studied. It surveys the difficulties associated with implementing new converter topologies in photovoltaic applications. Presented new topologies that have simpler control, less number of components, economical, and suitable for solar applications. Various types of isolated converter are explained such as different bidirectional converters, high step- up converters, zero current switching, high frequency isolated converter, isolated converter with discontinuous input, quasi-Z-source converter, multiport converter, high efficient converter, single-switch converter and single-switch resonant converter. Different types of structure characteristics and operation of the converters are presented. Based on the distinct features, a comparison of the converters has been carried out. From the review, a single converter topology does not fulfill all requirements in the industry. Future scopes of the research trend are suggested. The current survey is to update the research carried out during the time gap.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3