Design and Sensitive Analysis of Incremental Linear Actuator

Author:

Lachheb Aymen1,El Amraoui Lilia1

Affiliation:

1. Laboratory Smart Electricity & ICT, SEICT, LR18ES44, National Engineering School of Carthage, University of Carthage, Tunisia

Abstract

Abstract: This paper presents a novel single-sided linear actuator design and sensitivity analysis of different geometric parameters on the performances of the actuator. A numerical model based on the finite element method is developed for that purpose. Thus, the electromagnetic behavior of the actuator is analyzed with 2D magneto-static analysis, and the electromagnetic characteristics were presented with the study of the effect of different geometric parameters on the thrust force. Indeed, the magnetic flux distribution and the force profile are presented and discussed. The analysis of different parameters on the actuator's performance allows the selection of the appropriate values of these parameters to obtain optimal performance of the actuator. The analysis shows the air gap and stack length has a powerful influence on the actuator's performance. Furthermore, the increase of supply current has a significant effect, but a high level of Ampere turns to bring the magnetic circuit to the saturation zone. It is important to determine the optimal geometrical dimensions to reduce the mass of the motor. It is critical to choose the optimum power values for the actuator to obtain optimum performance and avoid exceeding operating limits. Background: The linear switched reluctance motor is used in many industrial applications such as the linear motion of machine tools, sliding door applications, and conveyors. Objective: A new design approach for a linear switched reluctance motor is developed in order to determine the geometric parameters of the structure. Methods: Finite element method is used to predict the characteristics of the motor and the analysis its performances. Results: The simulation results obtained by finite element analysis make it possible to study the electromagnetic behavior of the motor and to validate the established geometric model. Conclusion: The study was carried out to choose the optimal parameters in order to obtain optimal performance and avoid exceeding the operating limits of the motor.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3