Denoising and Restoring of Infrared Image of Power Equipment Based on l2-relaxed l0 Sparse Analysis Priors

Author:

Chen Xuejun1ORCID,Ma Lin2,Zhuang Jianhuang3

Affiliation:

1. Key Laboratory of Fujian Universities for New Energy Equipment Testing, Putian University, Putian 351100, P.R. China

2. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, P.R. China

3. Putian Power Supply Company of State Grid Fujian Electric Power Co., Ltd, Putian 351100, P.R. China

Abstract

Background: The infrared image of electrical equipment often contains snow or is blurred, which makes it difficult to detect and analyze its state. Methods: A prior infrared image denoising and restoring method based on L2-relaxation L0 analysis is proposed. Through the prior image estimation, the problem of image de-blurring and denoising is transformed into the problem of solving the maximum entropy of a posteriori probability, and then the parameters are jointly optimized to widely degrade the image, so that the image is locally sparse from the strip and edge to the linear predictable texture, and the target object to be extracted is obtained by using the alternative iterative solution, to achieve the purpose of denoising and restoring of the original fuzzy infrared image with noise. Two kinds of infrared images with different brightness levels in a 220kV booster station are used for the experiments. Results: Compared with BM3D, TwIST, TVL1C, TVL2C, the experimental results show that the denoising and restoration effect of the proposed method is clearly better than the four methods. The PSNR, ISNR, and SSIM of the proposed method are greater than the others, and the calculation time is shorter. Conclusion: This method can not only enhance the sparsity of the infrared image target and improve the estimation accuracy, but also has the advantages of minimum image distortion, fast convergence speed, and preserving the target detail edge. This method can provide a new idea for other types of infrared image denoising and restoration.

Funder

Natural Science Foundation of Fujian Province of China

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3