Research on the Control Strategy of PWM Rectifier under Unbalanced Grid

Author:

Bu Wenshao1,Wang Chaochao2,Li Jinwei1

Affiliation:

1. Electrical Engineering College, Henan University of Science and Technology, Luoyang 471023, China

2. Information Engineering College, Henan University of Science and Technology, Luoyang 471023, China

Abstract

Background: Aiming at the three-phase voltage source PWM rectifier (VSR), there have been some researches on the neural network control strategies, but the unbalanced power grid condition is always neglected. Meanwhile, about the self-detection technology of the unbalanced power grid voltage, there are still few researches. Methods: Under the unbalanced power grid conditions, this work presents a power grid voltage sensorless control strategy of the three-phase VSR. Based on the radial basis function neural network (RBF) theory, a newly PI controller with parameter self-tuning function is studied, and the RBF-PI controller is used for the closed-loop controls of the voltage and current variables. By means of T/4 delay method, the positive- and negative-sequence components of the power grid side current, and those of the equivalent virtual flux-linkage of unbalanced power grid are extracted. From the equivalent virtual flux-linkage, the unbalanced power grid voltage is reconstructed online. Results: Under the load mutation condition, the power grid voltage sensorless control of threephase VSR is achieved, the system response characteristics are analyzed. From the simulation experimental results, it can be seen that the unbalanced power grid voltage can be quickly tracked, and the sinusoidal control of the power grid side current can be achieved. In addition, the control system has a series of advantages, such as a faster dynamic response speed, a stronger robustness and a smaller DC side voltage ripple. Conclusion: The proposed unbalanced power grid voltage sensorless control strategy of threephase VSR is effective.

Funder

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3