Computational Studies and Biological Evaluation on Synthesized Lead 1,3- diphenyl-4,5-dihydro-1H-pyrazole Moiety as Anti-Infective Agents

Author:

Kiruthiga Natarajan1,Manickavalli Elangovan2,Vivekanandan Lalitha2,Roy Anitha3,Sivakumar Thangavel2

Affiliation:

1. Department of Pharmaceutical Chemistry, KMCH College of Pharmacy, The Tamilnadu Dr. MGR. Medical University, Chennai, Tamil Nadu, India

2. Department of Pharmaceutical Chemistry, Nandha College of Pharmacy, Koorapalayam Pirivu, Perundurai Road, Erode-638 052, Tamil Nadu, India

3. Department of Pharmacology, Faculty of Saveetha Institute of Medical and Technical Sciences, Chennai 77, Tamil Nadu, India

Abstract

Background: Chronic non communicable diseases were interlinked with inflammation and infections should response to starting core of major diseases in both acute and chronic conditions. In drug discovery, development of a drug which acts as anti-infective agents (anti-microbial and anti-inflammatory) must be ideal and challenging for management of many chronic diseases. Objective: In this study, six lead pyrazoline hybrids were synthesized by cyclization of chalcones and characterized by various spectroscopic and elemental analysis. All synthesized compounds were screened for anti-inflammatory and anti-microbial activity by computational tools and biological evaluation. Methods: Synthesized pyrazoline analogues were characterized by various spectroscopic techniques and evaluated for prediction of pharmacokinetics, physicochemical properties and Molecular docking studies of various targeted enzymes on microbial and inflammatory mediators. Those compounds were screened by anti-microbial and anti-inflammatory activities by several in-vitro and in-vivo methods. Results: The synthesized compounds (A1-A6) were screened for anti-inflammatory activity in which compound A2 produced effective percentage inhibition (45.8 %) potent activity compared with that of standard indomethacin (49.7 %) in carrageenan paw edema method were observed. The anti-microbial activity was screened on synthesized compounds, among which A3 [2-(1,3-diphenyl-4,5-dihydro-1H-pyrazol-5-yl) phenol, A2 [5-(4-chlorophenyl)-1,3-diphenyl-4,5-dihydro-1H-pyrazole] produced potential percentage zone of inhibition between 80 - 70 % for bacterial strains and 94 - 89 % for fungal strains were observed. The minimum inhibitory concentration values of those compounds were 1.56 to 6.25 µg/ml for bacterial strains and 1.56 to 12.5 µg/ml for fungal strains were noted compared with the standard gatifloxacin and clotrimazole, respectively. The molecular docking, pharmacokinetics and toxicity predictions on those compounds were supported further for the development of potent anti-infective agents. Conclusion: The hypothesis of this research was correlated with the results of anti-inflammatory and anti-microbial activity. The binding interactions of respective enzymes were coincided with reduction of paw edema in anti-inflammatory model and zone of inhibition in anti-microbial activity were observed.

Publisher

Bentham Science Publishers Ltd.

Subject

Infectious Diseases,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3