Optimization of Nanoscience Parameters for Extracting Phenolic Compounds from Ficus religiosa by Three-Phase Partitioning (TPP) Method

Author:

Rane Nitin M.1,Shewale Sandeep P.1

Affiliation:

1. School of Chemical Engineering, MIT Academy of Engineering, Alandi, Pune, India

Abstract

Background: Phenolic compounds are generally found in different parts of various herbs and plants such as leaves, barks, seeds, fruits, etc. These compounds show numerous bioactive properties, including antioxidant characteristics. Phenolic compounds obtained from beneficial herbs and dietary plants include flavonoids and tannins. In recent times, nanoscience has proved to be extensively helpful in extracting bioactive components. Additionally, nanomaterials have made a considerable contribution to the development of methodical techniques to retain superiority in processing foods and medicines. Objective: Of late, the process of extraction of nano-bioactive composites from natural resources has gained significant interest as these composites are used in manufacturing a wide range of products such as foods, paints, and pharmaceuticals. Therefore, there is a requirement to separate natural products to identify new nano-bioactive compounds that have the potential to improve the developed techniques. Methods: This research focuses on optimizing the experimental parameters to extract the phenolic compounds from Ficus religiosa (banyan leaves) by the three-phase partitioning (TPP) method. TPP is an advanced method that is widely used for the extraction, concentration, and purification of various nano-based bioactive compounds and enzymes. Results: During the investigation, various experimental parameters have been studied to obtain the maximum concentration of phenolic compounds from the dried powder of the Ficus religiosa leaves. The optimised results were found to be as follows: 30% of ammonium sulphate, solute to the solvent in the ratio of 1:20 (v/v), and slurry to t-butanol in the ratio of 1:1. Conclusion: The experimental results showed that the TPP method is very efficient as it needs minimum time to complete the extraction compared to the conventional solvent-based stirred batch extraction method.

Publisher

Bentham Science Publishers Ltd.

Subject

Materials Science (miscellaneous),Biomaterials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3