Li1.2Mn0.6Ni0.2O2 Cathode Material Prepared by the Ultrasonic Dispersionassisted Method

Author:

Fang Tingting1,Chu Hailiang1,Hua Junqiang1,Zhu Ying1,Qiu Shujun1,Bu Shengzhou1,Zhang Liangbin1,Yuan Mingzhong1,Zou Yongjin1,Xiang Cuili1,Zhang Huanzhi1,Yan Erhu1,Xu Fen1,Sun Lixian1

Affiliation:

1. Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Centre of Structure and Property for New Energy Materials, and School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004,China

Abstract

Background: Lithium-rich layered materials with high discharge capacity are regarded as one of the most promising cathodes for lithium-ion batteries (LIBs). However, they have been suffering from rapid voltage fading and poor rate performance, which impede their practical application. Methods: Herein, Li1.2Mn0.6Ni0.2O2 with layered structure was successfully prepared by the ultrasonic dispersion-assisted chemical reduction. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM) and electrochemical measurements were used to characterize its microstructure and electrochemical properties. Results: The secondary particles of an as-prepared micro/nanostructured sample consist of irregular and sheet-like rectangular blocks. Electrochemical results show that the initial charge and discharge capacity within 2.0~4.8 V is 337.5 mA h g-1 and 236.9 mA h g-1 at 0.2C (1C = 200 mA g-1). The subsequent discharge capacity is stabilized at about 210 mA h g-1 for more than 100 cycles. When the current density is increased to 2C, the cycling columbic efficiency is maintained at 99.3% after 100 cycles. Conclusion: Thus, the Li1.2Mn0.6Ni0.2O2 cathode material prepared by ultrasonic dispersion-assisted chemical reduction has a promising application in LIBs with high energy density and long cycle life.

Funder

Innovation Project of GUET Graduate Education

Guangxi Natural Science Foundation

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3