Multifunctional Hydroxyapatite-based Nanoparticles for Biomedicine: Recent Progress in Drug Delivery and Local Controlled Release

Author:

Rasouli Mohammad1,Darghiasi Seyedeh F.1,Naghib Seyed M.1ORCID,Rahmanian Mehdi2

Affiliation:

1. Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran,Iran

2. Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran,Iran

Abstract

As calcium phosphate micro/nano-structures (CPMNS) have been suggested, many protocols have been exploited to design new formulations. CPMNS are similar to a bone mineral from the point of view of structure and chemical composition. Some of them, such as hydroxyapatite (HAp), have been commercialized, and they demonstrated sufficient efficiency as hard tissue replacements for various purposes. Due to their biocompatibility, bioaccumulation, bioactivity, osteogenic activity, and anticancer properties, as well as great resemblance to body organs such as bones, these substances are suitable options for the diagnosis and treatment of various diseases. Therefore, recent advances of HAp applications in drug delivery for various diseases, such as cancer, bone disease, and tooth inflammation, are reviewed. Moreover, their implementation for several kinds of drugs, including anticancer, anti-inflammatory, antibiotics, growth factors and analgesics, is investigated.

Publisher

Bentham Science Publishers Ltd.

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3