A Multiscale Model to Study the Mechanical Properties of the Graphene, Boron Nitride and Silicon Carbide Hexagonal Nanosheets

Author:

Sun Yuzhou1ORCID,Hu Yingying1,Li Xinming1

Affiliation:

1. School of Civil Engineering and Architecture, Zhongyuan University of Technology, Zhengzhou 450007,China

Abstract

Background: It is very important to precisely comprehend nanosheet’s mechanical properties for their future application, and the continuum-based methods play a vital role in this research domain. But, most of continuum models doesn’t provide a systematical theory, and just display certain property of nanostructures. The Cauchy-Born rule provides an alternative multiscale method, the resulted model is not only less accurate, and but also doesn’t describe the bending effect. Methods: A nanosheet is viewed as a higher-order gradient continuum planar sheet, and the strain energy density is thus a function of both the first- and second-order deformation gradient. The higher- order Cauchy-Born rule is used to approximate the bond vectors in the representative cell, the multiscale model is established by minimizing the cell energy, and the structural and mechanical properties are thus obtained. Results: The obtained bond lengths are respectively 0.14507 nm, 0.14489 nm, 0.1816 nm for the graphene, boron nitride and silicon carbide hexagonal nanosheets. The elastic constants, including Young’s modulus, shear modulus, Poisson’s ratio and bending rigidity, are calculated by analyzing the physical meaning of the first- and second-order strain gradients. The developed model can also be used to study the nonlinear behavior of nanosheets under some simple loading situations, such as the uniform tension, torsion and bending. The stress-strain relationship of nanosheets is presented for the uniform tension/compression, and the three types of nannosheets exhibit better compressive resistance far greater than tensile resistance. Conclusion: A reasonable multiscale model is established for the nanosheets by using the higherorder Cauchy-Born rule that provides a good interlinking between the microscale and continuum descriptions. It is proved that all three types of nannosheets shows the isotropic mechanical property. The current model can be used to establish a global nonlinear numerical modeling method in which the bending rigidity is the basic elastic constants same as the elastic modulus and Poisson’s ratio.

Funder

Key scientific research project plan of colleges and universities in Henan Province

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3