Construction of lncRNA-ceRNA Networks to Reveal the Potential Role of Lfng/Notch1 Signaling Pathway in Alzheimer’s Disease

Author:

Zhang Yuan1,Yu Wanpeng1,Wang Man1

Affiliation:

1. Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, P.R. China

Abstract

Background: Alzheimer’s disease (AD) develops through a complex pathological process, in which many genes play a synergistic or antagonistic role. LncRNAs represent a kind of noncoding RNA, which can regulate gene expression at the epigenetic, transcriptional and posttranscriptional levels. Multiple lncRNAs have been found to have important regulatory functions in AD. Thus, their expression patterns, targets and functions should be explored as therapeutic targets. Methods: We used deep RNA-seq analysis to detect the dysregulated lncRNAs in the hippocampus of APP/PS1 mice. We performed Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to predict the biological roles and potential signaling pathways of dysregulated lncRNAs. Finally, we constructed lncRNA-miRNA-mRNA and lncRNA-mRNA co-expression networks to reveal the potential regulator roles in AD pathogenesis. Results: Our findings revealed 110 significantly dysregulated lncRNAs. GO and KEGG annotations showed the dysregulated lncRNAs to be closely related to the functions of axon and protein digestion and absorption. The lncRNA-mRNA network showed that 19 lncRNAs regulated App, Prnp, Fgf10 and Il33, while 5 lncRNAs regulated Lfng via the lncRNA-miR-3102-3p-Lfng axis. Furthermore, we preliminarily demonstrated the important regulatory role of the Lfng/Notch1 signaling pathway through lncRNA-ceRNA networks in AD. Conclusion: We revealed the important regulatory roles of dysregulated lncRNAs in the etiopathogenesis of AD through lncRNA expression profiling. Our results showed that the mechanism involves the regulation of the Lfng/Notch1 signaling pathway.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3