Exploring Shared Pathogenesis of Alzheimer’s Disease and Type 2 Diabetes Mellitus via Co-expression Networks Analysis

Author:

Zhu Yukun1,Ding Xuelu1,She Zhaoyuan1,Bai Xue1,Nie Ziyang1,Wang Feng2,Wang Fei3,Geng Xin1

Affiliation:

1. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China

2. Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China

3. Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, China

Abstract

Background: Alzheimer’s Disease (AD) and Type 2 Diabetes Mellitus (T2DM) have an increased incidence in modern society. Although increasing evidence has supported the close linkage between these two disorders, the inter-relational mechanisms remain to be fully elucidated. Objective: The primary purpose of this study is to explore the shared pathophysiological mechanisms of AD and T2DM. Methods: We downloaded the microarray data of AD and T2DM from the Gene Expression Omnibus (GEO) database and constructed co-expression networks by Weighted Gene Co-Expression Network Analysis (WGCNA) to identify gene network modules related to AD and T2DM. Then, Gene Ontology (GO) and pathway enrichment analysis were performed on the common genes existing in the AD and T2DM related modules by clusterProfiler and DOSE package. Finally, we utilized the STRING database to construct the protein-protein interaction network and found out the hub genes in the network. Results: Our findings indicated that seven and four modules were the most significant with AD and T2DM, respectively. Functional enrichment analysis showed that AD and T2DM common genes were mainly enriched in signaling pathways such as circadian entrainment, phagosome, glutathione metabolism and synaptic vesicle cycle. Protein-protein interaction network construction identified 10 hub genes (CALM1, LRRK2, RBX1, SLC6A1, TXN, SNRPF, GJA1, VWF, LPL, AGT) in AD and T2DM shared genes. Conclusions: Our work identified common pathogenesis of AD and T2DM. These shared pathways might provide a novel idea for further mechanistic studies and hub genes that may serve as novel therapeutic targets for diagnosis and treatment of AD and T2DM.

Funder

Key project of Tianjin Natural Science

Chinese National Natural Science Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3