Discriminative Sparse Features for Alzheimer's Disease Diagnosis Using Multimodal Image Data

Author:

Ortiz Andres1,Lozano F.1,Górriz Juan M.2,Ramírez Javier3,Martínez Murcia Francisco J.3,Neuroimaging Initiative for the Alzheimer’s Disease4

Affiliation:

1. Department of Communications Engineering, University of Málaga, Málaga 29071, Spain

2. Department of Signal Theory, Networking and Communications, 18071 University of Granada, Granada, Spain

3. Department of Signal Theory, Networking and Communications , University of Granada, Granada 18071, Spain

4. .

Abstract

Background: Feature extraction in medical image processing still remains a challenge, especially in high-dimensionality datasets, where the expected number of available samples is considerably lower than the dimension of the feature space. This is a common problem in real-world data, and, specifically, in medical image pro- cessing as, while images are composed of hundreds of thousands voxels, only a reduced number of patients are available. Objective: Extracting descriptive and discriminative features to represent each sample (image) by a small number of features, which is particularly important in classification task, due to the curse of dimensionality problem. Methods: In this paper we solve this recognition problem by means of sparse representations of the data, which also provides an arena to multimodal image (PET and MRI) data classification by combining specialized classifiers. Thus, a novel method to effectively combine SVC classifiers is presented here, which uses the distance to the hyperplane computed for each class in each classifier allowing to select the most discriminative image modality in each case. The discriminative power of each modality also provides information about the illness evolution; while functional changes are clearly found in Alzheimer’s diagnosed patients (AD) when compared to control subjects (CN), structural changes seem to be more relevant at the early stages of the illness, affecting Mild Cognitive Impairment (MCI) patients. Results: Classification experiments using 68 CN, 70 AD and 111 MCI images from the Alzheimer's Disease Neuroimaging Initiative database have been performed and assessed by cross-validation to show the effectiveness of the proposed method. Accuracy values of up to 92% and 84% for CN/AD and CN/MCI classification are achieved. Conclusions: The method presented in this work shows that sparse representations of brain images are of importance for codifying and transferring relevant image features, as they may capture the salient features while maintaining lightweight data transactions. In fact, the method proposed in this work outperforms the classification results obtained using projection methods such as Principal Component Analysis for extracting representative features of the images.

Publisher

Bentham Science Publishers Ltd.

Subject

Neurology (clinical),Neurology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3