Oxidative Damage of Proteins Precedes Loss of Cholinergic Phenotype in the Septal Neurons of Olfactory Bulbectomized Mice

Author:

Nedogreeva O.A.1,Evtushenko N.A.1,Manolova A.O.1,Peregud D.I.1ORCID,Yakovlev A.A.1,Lazareva N.A.1,Gulyaeva N.V.1ORCID,Stepanichev M.Y.1ORCID

Affiliation:

1. Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow,Russian Federation

Abstract

Background: The development of cholinergic deficit is considered an early sign of a number of pathological conditions, including Alzheimer’s disease. Cholinergic dysfunction underlies cognitive decline associated with both normal aging and Alzheimer’s disease. Objective: Here, we studied a possible mechanism of functional impairment of cholinergic neurons using an olfactory bulbectomy model. Methods: Male mice were subjected to olfactory bulbectomy or sham surgery. Three weeks after that they were trained in Morris water maze and then euthanized one month after surgery. The cholinergic indices as well as the indices of oxidative stress were studied using immunohistochemistry, western blot and ELISA. Gene expression was studied using RT-qPCR. Results: The experimental treatment was followed by impaired learning of a standard spatial task in a water maze. This was associated with a decrease in the number of cells containing choline acetyltransferase (ChAT), in relation to total number of neurons in the medial septum and lower ChAT enzymatic activity in the hippocampus. However, the levels of mRNAs of ChAT, vesicular ACh transporter and acetylcholine esterase remained unchanged in bulbectomized mice compared to sham-operated animals. These alterations were preceded by the accumulation of protein-bound carbonyls, indicating oxidative damage of proteins, whereas oxidative damage of nucleic acids was not detected. Conclusion: We assume that in olfactory bulbectomy model, oxidative damage of proteins may cause cholinergic dysfunction rather than irreversible neuronal damage. These data indicate that cholinergic neurons of the basal forebrain are very sensitive to oxidative stress, which may be responsible for the appearance of early cognitive decline in Alzheimer’s disease.

Funder

Russian Foundation for Basic Research

Publisher

Bentham Science Publishers Ltd.

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3