Repetitive Transcranial Magnetic Stimulation Reverses Aβ1–42-induced Dysfunction in Gamma Oscillation during Working Memory

Author:

Bai Wenwen1,Liu Tiaotiao1,Dou Mengmeng1,Xia Mi1,Lu Jun1,Tian Xin1

Affiliation:

1. School of Biomedical Engineering, Tianjin Medical University, Tianjin, China

Abstract

Background: Alzheimer's disease (AD) is a neurodegenerative disease that gradually induces cognitive deficits in the elderly and working memory impairment is typically observed in AD. Amyloid-β peptide (Aβ) is a causative factor for the cognitive impairments in AD. Gamma oscillations have been recognized to play important roles in various cognitive functions including working memory. Previous study reported that Aβ induces gamma oscillation dysfunction in working memory. Objective: Although repetitive transcranial magnetic stimulation (rTMS) represents a technique for noninvasive stimulation to induce cortical activity and excitability changes and has been accepted for increasing brain excitability and regulating cognitive behavior, the question whether rTMS can reserve the Aβ-induced gamma oscillation dysfunction during working memory remains unclear. The present study aims to investigate the effect of rTMS to the Aβ-induced gamma oscillation dysfunction during working memory. Method: The present study investigates the rTMS-modulated gamma oscillation in Aβ1-42-induced memory deficit. Adult SD rats were divided into four groups: Aβ, Con, Aβ+rTMS and Con+rTMS. 16-channel local field potentials (LFPs) were recorded from rat medial prefrontal cortex while the rats performed a Y-maze working memory task. Gamma oscillation among LFPs was measured by coherence. Results: The results show that rTMS improved the behavior performance and enhanced gamma oscillation for the Aβ-injected subjects. Conclusion: These results indicate that rTMS may reserve the Aβ-induced dysfunction in gamma oscillation during working memory and thus result in potential benefits for working memory.

Publisher

Bentham Science Publishers Ltd.

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3