RAGE Isoforms, its Ligands and their Role in Pathophysiology of Alzheimer’s Disease

Author:

Chellappa Rani C.1,Palanisamy Rani1,Swaminathan Karthikeyan1

Affiliation:

1. Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, India

Abstract

Receptor for Advanced Glycation End product (RAGE) plays a crucial role in a variety of physiological and pathological processes due to its ability to bind a broad repertory of ligands. There are also multiple forms of RAGE that exist; some work on promoting feed-forward pathways while others perform inhibitory actions. This review focuses on the RAGE isoforms expression, its intracellular pathways activation via RAGE- ligand interaction, and its importance in the physiological and pathological process of the brain. Many studies have suggested that RAGE induces the pathophysiological changes in Alzheimer’s disease (AD) by being an intermediator of inflammation and inducer of oxidative stress. The critical roles played by RAGE in AD include its involvement in amyloid-beta (Aβ) production, clearance, synaptic impairment, and neuronal circuit dysfunction. RAGE-Aβ interaction also mediates the bi-directional crosstalk between peripheral and central systems. This interaction underlies a potential molecular pathway that disrupts the material structure and physiology of the brain. This review highlights the structure-function relation for RAGEAβ interaction and the role of RAGE as a potential target in the development of treatments for AD.

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3