Mitochondrially-Targeted Therapeutic Strategies for Alzheimer’s Disease

Author:

Onyango Isaac G.1,Bennett James P.2,Stokin Gorazd B.1

Affiliation:

1. Centre for Translational Medicine International Clinical Research Centre, St. Anne’s University Hospital CZ-65691, Brno, Czech Republic

2. Neurodegeneration Therapeutics, 3050A Berkmar Drive Charlottesville, VA22901, United States

Abstract

Alzheimer’s disease (AD) is an irreversible, progressive neurodegenerative disease and the most common cause of dementia among older adults. There are no effective treatments available for the disease, and it is associated with great societal concern because of the substantial costs of providing care to its sufferers, whose numbers will increase as populations age. While multiple causes have been proposed to be significant contributors to the onset of sporadic AD, increased age is a unifying risk factor. In addition to amyloid-β (Aβ) and tau protein playing a key role in the initiation and progression of AD, impaired mitochondrial bioenergetics and dynamics are likely major etiological factors in AD pathogenesis and have many potential origins, including Aβ and tau. Mitochondrial dysfunction is evident in the central nervous system (CNS) and systemically early in the disease process. Addressing these multiple mitochondrial deficiencies is a major challenge of mitochondrial systems biology. We review evidence for mitochondrial impairments ranging from mitochondrial DNA (mtDNA) mutations to epigenetic modification of mtDNA, altered gene expression, impaired mitobiogenesis, oxidative stress, altered protein turnover and changed organelle dynamics (fission and fusion). We also discuss therapeutic approaches, including repurposed drugs, epigenetic modifiers, and lifestyle changes that target each level of deficiency which could potentially alter the course of this progressive, heterogeneous Disease while being cognizant that successful future therapeutics may require a combinatorial approach.

Funder

European Regional Development Fund- Project ENOCH 750

Publisher

Bentham Science Publishers Ltd.

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3