Disrupted Balance of Gray Matter Volume and Directed Functional Connectivity in Mild Cognitive Impairment and Alzheimer’s Disease

Author:

Xiong Yu1,Ye Chenghui1,Sun Ruxin1,Chen Ying1,Zhong Xiaochun1,Zhang Jiaqi1,Zhong Zhanhua1,Chen Hongda2,Huang Min1

Affiliation:

1. Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China

2. Department of Traditional Chinese Medicine, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China

Abstract

Background: Alterations in functional connectivity have been demonstrated in Alzheimer’s disease (AD), an age-progressive neurodegenerative disorder that affects cognitive function; however, directional information flow has never been analyzed. Objective: This study aimed to determine changes in resting-state directional functional connectivity measured using a novel approach, granger causality density (GCD), in patients with AD, and mild cognitive impairment (MCI) and explore novel neuroimaging biomarkers for cognitive decline detection. Methods: In this study, structural MRI, resting-state functional magnetic resonance imaging, and neuropsychological data of 48 Alzheimer’s Disease Neuroimaging Initiative participants were analyzed, comprising 16 patients with AD, 16 with MCI, and 16 normal controls. Volume-based morphometry (VBM) and GCD were used to calculate the voxel-based gray matter (GM) volumes and directed functional connectivity of the brain. We made full use of voxel-based between-group comparisons of VBM and GCD values to identify specific regions with significant alterations. In addition, Pearson’s correlation analysis was conducted between directed functional connectivity and several clinical variables. Furthermore, receiver operating characteristic (ROC) analysis related to classification was performed in combination with VBM and GCD. Results: In patients with cognitive decline, abnormal VBM and GCD (involving inflow and outflow of GCD) were noted in default mode network (DMN)-related areas and the cerebellum. GCD in the DMN midline core system, hippocampus, and cerebellum was closely correlated with the Mini- Mental State Examination and Functional Activities Questionnaire scores. In the ROC analysis combining VBM with GCD, the neuroimaging biomarker in the cerebellum was optimal for the early detection of MCI, whereas the precuneus was the best in predicting cognitive decline progression and AD diagnosis. Conclusion: Changes in GM volume and directed functional connectivity may reflect the mechanism of cognitive decline. This discovery could improve our understanding of the pathology of AD and MCI and provide available neuroimaging markers for the early detection, progression, and diagnosis of AD and MCI.

Funder

National Natural Science Foundation of China

Shenzhen Bureau of Science, Technology and Information

Project of Administration of Traditional Chinese Medicine of Guangdong Province of China

Project of Traditional Chinese Medicine of Guangming District

Publisher

Bentham Science Publishers Ltd.

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3