Author:
Torres R. Abel C.,Santos Diego T.,Meireles M. Angela A.
Abstract
Background:An efficient process for extracting food ingredients from plant materials should demand the use of a reduced volume of extraction solvent to obtain a final product that is free of solvent and reduces both the processing time and the costs. In some cases, achieving a new efficient process requires the modification, reconfiguration or renewal of elements that are part of a processing unit.Objective:The goal of this work is to describe the development of a modification of a commercial supercritical fluid extraction pilot unit designed to assist CO2recycling based on subcritical adsorption on an adsorbent material. In addition to the construction and validation of the system, a cost survey was performed to estimate the cost of the homemade device developed to allow effective CO2recycling.Methods:The developed device was tested using cotton and Celite®as model adsorption materials and annatto seeds (Bixa orellana L.) as a model plant material. A 0.65 L adsorption column was installed with a set of connections and valves that complemented the unit’s recycle system. The validation procedure consisted of defatting annatto seeds.Results:The proposed online subcritical adsorption-based device was technically validated using cotton as an adsorbent material. The cost survey showed that an estimated total cost of USD 5731.36 would be required to install the developed device in a Supercritical Fluid Extraction (SFE) unit similar to the one coupled here (5 L).Conclusion:The proposed device was demonstrated to be very promising for application in the pseudocontinuous SFE, recirculating the same amount of CO2mass exceeding the S/F values by 14 times, when compared to a process without a CO2recycling system.
Publisher
Bentham Science Publishers Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献