Construction and Validation of an Online Subcritical Adsorption-based Device for Assisting CO2 Recycling during a Supercritical Fluid Extraction Process

Author:

Torres R. Abel C.,Santos Diego T.,Meireles M. Angela A.

Abstract

Background:An efficient process for extracting food ingredients from plant materials should demand the use of a reduced volume of extraction solvent to obtain a final product that is free of solvent and reduces both the processing time and the costs. In some cases, achieving a new efficient process requires the modification, reconfiguration or renewal of elements that are part of a processing unit.Objective:The goal of this work is to describe the development of a modification of a commercial supercritical fluid extraction pilot unit designed to assist CO2recycling based on subcritical adsorption on an adsorbent material. In addition to the construction and validation of the system, a cost survey was performed to estimate the cost of the homemade device developed to allow effective CO2recycling.Methods:The developed device was tested using cotton and Celite®as model adsorption materials and annatto seeds (Bixa orellana L.) as a model plant material. A 0.65 L adsorption column was installed with a set of connections and valves that complemented the unit’s recycle system. The validation procedure consisted of defatting annatto seeds.Results:The proposed online subcritical adsorption-based device was technically validated using cotton as an adsorbent material. The cost survey showed that an estimated total cost of USD 5731.36 would be required to install the developed device in a Supercritical Fluid Extraction (SFE) unit similar to the one coupled here (5 L).Conclusion:The proposed device was demonstrated to be very promising for application in the pseudocontinuous SFE, recirculating the same amount of CO2mass exceeding the S/F values by 14 times, when compared to a process without a CO2recycling system.

Publisher

Bentham Science Publishers Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3