Real-time Remote Monitoring System Based on the Large Deformation Cable with Constant Resistance for Landslide Disaster and Its Application

Author:

Tao Zhigang,Li Haipeng,Zhang Haijiang,Zhang Xiulian

Abstract

It is meaningful for researching on monitoring and forecasting technology of slope stability to prevent landslide disasters, especially in the water system fields. Based on the mechanical principle of interaction among sliding mass, sliding bed and monitoring cable, a new type of energy absorbing cable (called Large Deformation Cable with Constant Resistance) which can have 2000mm deformation with constant pull load of 850kN is developed. The mechanical principle of relative movement between sliding mass and sliding bed is proposed, and the multi-factor monitoring is transformed into single landslide mechanical monitoring. The relationship between sliding force of slope and pretightening force of monitoring cable is set up. According to the physical model experiment of landslide, the sliding force at the potential slip surface will change continually before the landslide. When the sliding force is greater than the shear resistance at the potential slip surface, the landslide will take place, which means the variation of sliding force at the potential slip surface will be ahead of displacement on the ground of slope. Consequently, monitoring the variation of sliding force at the potential slip surface is better than that of the displacement. Based on above principle and experiment, the system of real-time remote monitoring and forecasting for landslide disasters based on the large deformation cable with constant resistance is developed, which can realize the real-time remote monitoring warning of sliding force. Several landslides have been successfully predicted.

Publisher

Bentham Science Publishers Ltd.

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3