BPS and BPF are as Carcinogenic as BPA and are Not Viable Alternatives for its Replacement

Author:

Edaes Felipe Sanches1ORCID,de Souza Cleide Barbieri1ORCID

Affiliation:

1. Academic Center for Studies and Research in Biotechnology and Molecular Biology (NAPBBM), Lusíada University Center (UNILUS), Santos, Brazil

Abstract

Background: Plastic polymers are omnipresent, and life without them is virtually impossible. Despite the advantages provided by the material, conventional plastic also has harmful effects on the environment and human health. Plastics release microplastics and compounds, such as BPA, which is a xenoestrogen and once absorbed by the body, have an affinity for estrogen receptors α and β, acting as an agonist on human cells, being an endocrine disrupter able to cause various diseases and acting as a potential neoplastic inducer. BPS and BPF are BPA’s analogs, a proposed solution to solve its harmful effects. The analogs can be found in daily use products and are used in several industrial applications. Objectives: In the present work, the researchers aimed to conduct a revisional study on BPA's harmful effects on human health, focusing on its carcinogenic potential, discussing its mechanisms of action, as well as its analogs effects, and identifying if BPS and BPF are viable alternatives to BPA's substitution in plastic polymers' production. Methods: In this review, articles published in the last 15 years related to the different aspects of conventional plastics and BPA were analyzed and revised with precision. The subjects ranged from conventional plastics and the problems related to their large-scale production, BPA, its negative aspects, and the feasibility of using its analogs (BPS and BPF) to replace the compound. The articles were extensively reviewed and concisely discussed. Results: This study demonstrated that BPA has a high carcinogenic potential, with known mechanisms to trigger breast, ovarian, prostate, cervical, and lung cancers, thus elucidating that its analogs are also xenoestrogens, and they can exert similar effects to BPA and, therefore, cannot be considered viable alternatives for its replacement. Conclusion: This study suggests that new research should be carried out to develop such alternatives, allowing the substitution of plastic materials containing BPA in their composition, such as developing economically viable and sustainable biodegradable bioplastics for socio-environmental well-being.

Publisher

Bentham Science Publishers Ltd.

Subject

Immunology and Allergy,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3