Effects of ad libitum free-choice access to freshly squeezed domestic white asparagus juice on intestinal microbiota composition and universal biomarkers of immuno-metabolic homeostasis and general health in middle-aged female and male C57BL/6 mice

Author:

Ghadimi Darab1,Frahm Sven Olaf2,Röcken Christoph3,Ebsen Michael4,Schwiertz Andreas5,Fölster-Holst Regina6,Bockelmann Wilhelm1,Heller Knut J7

Affiliation:

1. Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany

2. Medizinisches Versorgungszentrum (MVZ), Pathology and Laboratory Medicine Dr. Rabenhorst, Prüner Gang 7, 24103 Kiel, Germany

3. Institute of Pathology, Kiel University,University Hospital, Schleswig-Holstein, Arnold-Heller-Straße 3/14, D-24105 Kiel, Germany

4. StädtischesMVZ Kiel GmbH, Department of Pathology, Chemnitzstr.33, 24116 Kiel, Germany

5. MVZ Institute of Microecology, Auf den Lüppen 8, 35745 Herborn, Germany

6. Clinic of Dermatology, University Hospital Schleswig-Holstein, Schittenhelmstr. 7, D-24105 Kiel, Germany

7. Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology; Kiel, Germany

Abstract

Background and purpose: Asparagus contains different bioactive and volatile components including pyrazines, sulphur-containing compounds, and polyphenols. Asparagus juice is a new low-calorie LAB-containing natural juice product, the usage of which is expanding. Pyrazines and sulphur-containing compounds are degraded by bacteria on one hand, but on the other hand, dietary polyphenols prevent human colorectal diseases as modulators of the composition and/or activity of gut microbiota. However, the utility of these asparagus compounds for reversal of age-associated microbial dysbiosis and the immunometabolic disorders that dysbiosis incites body inflammatory reactions was not much explored so far. Hence, using middle-aged mice, we conducted the current study to verify the effect of freshly squeezed domestic white asparagus juice on the biomarkers reflecting immuno-metabolic pathways linking age-related dysbiosis and metabolic events. Materials and Methods: Thirty-two conventional Harlan Laboratories C57BL/6 mice aged between 11-12 months were randomly divided into two groups (n=16). Mice in control group 1 received sterile tap water. Animals in group 2 had 60 days ad libitum free-choice access to sterile tap water supplemented with 5% (v/v) freshly squeezed domestic white asparagus juice. Clinical signs of general health, hydration, and inflammation were monitored daily. Caecal content samples were analysed by qPCR for microbial composition. Histology of relevant organs was carried out on day 60 after sacrificing the mice. Universal markers of metabolic- and liver function were determined in serum samples. Caecal SCFAs contents were measured using HPLC. Results: Overall, no significant differences in general health or clinical signs of inflammation between the two groups were observed. The liver to body weight ratio in asparagus juice-drank mice was lowered. The qPCR quantification showed that asparagus juice significantly decreased the caecal Clostridium coccoides group while causing an enhancement in Clostridium leptum, Firmicutes, and bifidobacterial groups as well as total caecal bacterial count. Asparagus juice significantly elevated the caecal contents of SCFAs. Enhanced SCFAs (acetate, butyrate, and propionate) in mice receiving asparagus juice, however, did coincide with altered lipid levels in plasma or changes in the abundance of relevant bacteria for acetate-, butyrate-, and propionate production. Discussion: To the best of our knowledge, this is the first study aiming at evaluating the effect of freshly squeezed German domestic white asparagus juice on universal markers of metabolic- and liver function in middle-aged mice and the role of gut microbiota in this regard. The effectiveness of asparagus juice to improve metabolism in middle-aged mice was associated with alterations in intestinal microbiota but maybe also due to uptake of higher amounts of SCFAs. Hence, the key signal pathways corresponding to improved immune-metabolic homeostasis will be an important research scheme in the future.

Publisher

Bentham Science Publishers Ltd.

Subject

Immunology and Allergy,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3