Review on Green Synthesis of Silver Nanoparticles through Plants

Author:

Shumail Hoor1ORCID,Khalid Shah2ORCID,Ahmad Izhar2,Khan Haroon3ORCID,Amin Surriya2,Ullah Barkat2ORCID

Affiliation:

1. Department of Microbiology, Women University, Mardan, Pakistan

2. Department of Botany, Faculty of Life and Chemical Sciences, Islamia College Peshawar, Peshawar, Pakistan

3. Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan

Abstract

Nature has the potential to reduce metal salts to their relative nanoparticles. Traditionally, physical and chemical methods were used for the synthesis of nanoparticles but due to the use of toxic chemicals, non-ecofriendly methods and other harmful effects, green chemistry approaches are now employed for synthesizing nanoparticles which are basically the most cost effective, ecofriendly and non-hazardous methods. In this review, we aimed to evaluate and study the details of various mechanisms used for green synthesis of silver nanoparticles from plants, their size, shape and potential applications. A total of 150 articles comprising both research and review articles from 2009 to 2019 were selected and studied in detail to get in-depth knowledge about the synthesis of silver nanoparticles specifically through green chemistry approaches. Silver ions and their salts are well known for their antimicrobial properties and have been used in various medical and non-medical applications since the emergence of human civilization. Miscellaneous attempts have been made to synthesize nanoparticles using plants and such nanoparticles are more efficient and beneficial in terms of their antibacterial, antifungal, antioxidant, anti-biofilm and cytotoxic activities than nanoparticles synthesized through physical and chemical processes. Silver nanoparticles have been studied as an important research area due to their specific and tunable properties and their application in the field of biomedicine such as tissue and tumor imaging and drug delivery. These nanoparticles can be further investigated to find out their antimicrobial potential in cell lines and animal models.

Publisher

Bentham Science Publishers Ltd.

Subject

Immunology and Allergy,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3