Vitamin D Represses the Aggressive Potential of Osteosarcoma

Author:

Tahbazlahafi Behnoosh1ORCID,Paknejad Malihe1ORCID,Khaghani Shahnaz1,Sadegh-Nejadi Sahar1,Khalili Ehsan1ORCID

Affiliation:

1. Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Background: Osteosarcoma (OS) is the basic bone neoplasm with lower survival and poor prognosis. It is distinguished by its offensive nature and metastatic potential. The fundamental death source in OS patients is lung metastasis. In addition, the proliferation and cell migration are thus essential for cancer progression, especially for intrusion and transformation. Several studies have illustrated that 1,25-Dihydroxyvitamin D (1,25(OH)2D) has a critical role in the growth and differentiation of bone. However, knowledge of the outcome of 1,25(OH)2D on the progression and incursion of osteosarcoma cells is minimal. Objective: The present study aimed to analyze the effect of different concentrations of 1,25(OH)2D on the multiplication, progression, and intrusion of OS cells and verify the effective doses of 1,25(OH)2D that can decrease the intensity of the disease and improving the prognosis in OS patients. Methods: Saos-2 cells were treated with 1,25(OH)2D (0, 50, 100, and 200 nM) for 48, 72, and 96 hours. Proliferation, invasion, and migration were determined by MTT assay, Transwell assay, and Scratch test, respectively. The levels of c-Myc and FOXO1 proteins were determined by Western blotting. Results: The proliferation, invasiveness, and migration of Saos-2 cells that were treated with 1,25(OH)2D were significantly decreased compared with untreated cells. Although 1,25(OH)2D notably decreased c-Myc protein levels (after 48 and 72 hours), FOXO1 protein levels have been significantly increased after 48 and 72 hours. 1,25(OH)2D and the vitamin D receptor (VDR) suppress c-Myc function through regulating the c-Myc/MXD1 network and thus, providing a molecular basis of 1,25(OH)2D related to the cancer-preventive actions. Conclusion: Based on the present results, 1,25(OH)2D by targeting c-Myc and FOXO1 expression displays anti-invasive, anti-migration and anti-proliferative effects on OS cells in vitro. Our findings suggest that effective doses of the 1,25(OH)2D may reduce the aggressive potential of the OS cell line. However, further investigation and clinical trials are needed.

Funder

Deputy of Research, Tehran University of Medical Sciences

Publisher

Bentham Science Publishers Ltd.

Subject

Immunology and Allergy,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3