Numerical Analysis of Convergent-Divergent Angles and Operating Conditions Impact on Rocket Nozzle Performance Parameters

Author:

ALILI Nabila1,KADDOURI Khacem2,MOKADEM Salem2,ALAMI Ahmed3

Affiliation:

1. Laboratory of Physical Mechanics of Materials (LMPM), Mechanical Engineering Department, Djillali Liabes University, City Larbi Ben Mhidi, P.O. Box 89, 22000 Sidi Bel Abbes, Algeria, alili.16nabila@gmail.com, nabila.alili@univ-sba.dz

2. Laboratory of Physical Mechanics of Materials (LMPM), Mechanical Engineering Department, Djillali Liabes University, City Larbi Ben Mhidi, P.O. Box 89, 22000 Sidi Bel Abbes, Algeria

3. Laboratory of Process Engineering, Materials and Environment, Sidi Bel Abbes, Algeria

Abstract

Comprehensive numerical analysis was conducted to elucidate the exhaust performance of rocket engine nozzles. The study focused on unravelling the intricate relationship between convergence and divergence angles and their impact on the exhaust performance parameters, including velocity coefficient (cv), angularity coefficient (Ca), and gross thrust coefficient (Cfg). In contrast to conventional studies that focus mainly on the divergent section, this research delved into both convergent and divergent aspects of nozzle geometry. For the convergent section, a range of angles from 20° to 45° was systematically examined. For the divergent section, a wide spectrum of angles was explored, ranging from small (10°-13°), medium (14°-19°) and large (20°-25°) divergent angles. Further, we venture beyond geometry, investigating the influence of nozzle pressure ratio (NPR) on these key metrics. Realisable 𝑘𝑘−𝜀𝜀, enhanced wall traitement was used to simulate nozzle flow. The study identified the optimal convergent angle at 37.5°. The 15° diverging angle provides good overall performance, while the 23° angle strikes the ideal compromise: maximizing thrust and efficiency while minimizing weight and maintaining optimal performance.

Publisher

INCAS - National Institute for Aerospace Research Elie Carafoli

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3