The Euler’s harmonic holomorphic regenerative universe

Author:

DUMITRESCU Horia1,CARDOS Vladimir2,BOGATEANU Radu3

Affiliation:

1. “Gheorghe Mihoc – Caius Iacob” Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy, Calea 13 Septembrie no. 13, 050711 Bucharest, Romania, dumitrescu.horia@yahoo.com

2. “Gheorghe Mihoc – Caius Iacob” Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy, Calea 13 Septembrie no. 13, 050711 Bucharest, Romania, v_cardos@yahoo.ca

3. INCAS – National Institute for Aerospace Research “Elie Carafoli”, B-dul Iuliu Maniu 220, Bucharest 061126, Romania bogateanu.radu@incas.ro

Abstract

The Cartesian dualism is a precursor to Euler’s complex theory, that completes the Descartes-Leibnitz monadic conception using the natural quanta (non-splitting e, π) along with their topological torsion in the form of dual isomorphism. The complete Euler’s identity controls a bounded regenerative/ recurrent multiverse (a kind of multigraph) by two regenerative exponential functions, one quantic, e = exp (1) and another gravitational, g0 ≡ 10 = exp (1) with the fixed points, g0 = π2 and (g0g0) respectively. Physically, the fixed points give the well-defined the unit gravity (g0 m/s2) and light self-ignition velocity of a stable recurrent self-sustained process, provided the rate of mass production just equals the rate removal. This is the Euler’s fictitious regenerative universe - like our world, a quantum autocatalytic reaction system. The present paper describes such a system controlled by thermal gravitational waves, in the case the critical solar system.

Publisher

INCAS - National Institute for Aerospace Research Elie Carafoli

Reference14 articles.

1. [1] P.J. Nahin, Dr. Euler’s fabulous formula, Cures Many Mathematical Ills, Princeton University Press, 2006.

2. [2] R. Wilson, Euler’s Pioneering Equation: The Most Beautiful Theorem in Mathematics, Oxford University Press, 2018.

3. [3] R. Penrose, Conformal approach to infinity, in Relativity, Groups and Topology, Gordon and Breach, New York, 1964.

4. [4] R. Penrose, Topological QFT and twistors: holomorphic linking, Twistors Newsletter, vol. 27, 1-4, 1988.

5. [5] R. Penrose, Newton, quantum theory and reality, in 300 years of Gravity (ed. S.W. Hawking and W. Israel), pp. 17-49, Cambridge University Press, Cambridge, 1987.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3