Design and performance evaluation of a high temperature axisymmetric plug nozzle

Author:

ABDALLAH ELHIRTSI Ahmed1,ZEBBICHE Toufik2

Affiliation:

1. Aeronautical Sciences Laboratory, Aeronautics and Space Studies Institute, Blida 1 University, BP 270 Blida 09000, Algeria, abdallah.elhirtsi.a@gmail.com

2. Aeronautical Sciences Laboratory, Aeronautics and Space Studies Institute, Blida 1 University, BP 270 Blida 09000, Algeria

Abstract

In this study, a method for designing supersonic nozzles with axisymmetric plugs at high temperature has been proposed. The approach is based on the theory of Prandtl-Mayer expansion at high temperatures using the method of characteristics. For this purpose, a code in FORTRAN language was developed in order to obtain the nozzle design. Once the latter was obtained, we were interested in the evolution of the thermodynamic parameters of the flow such as pressure, temperature, and Mach number. The results achieved were confronted with those obtained for a perfect gas model. Regarding the design parameters (length, section ratio, thrust coefficient and mass coefficient), we found that the PG model gives very satisfactory results for values of 𝑀𝑀 and 𝑇𝑇0 below 2.00 and 1000 𝐾𝐾, respectively. As 𝑀𝑀𝐸𝐸 and 𝑇𝑇0 increase, this affects performance, requiring the use of our HT model to correct the calculations. In order to minimize the weight of this nozzle, this research is investigating the truncation of the Plug nozzle to increase its performances. All calculations were performed for air.

Publisher

INCAS - National Institute for Aerospace Research Elie Carafoli

Subject

Aerospace Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3