Neural Reflex Networks for Automating Quadcopter Drone Obstacle Avoidance

Author:

PANAIT Marius Alexandru1

Affiliation:

1. INCAS – National Institute for Aerospace Research “Elie Carafoli”, B-dul Iuliu Maniu 220, Bucharest 061126, Romania, panait.marius@incas.ro

Abstract

The physically modelled neural and nervous networks pioneered more than two decades ago by Mark Tilden, E. A. Rietman and collaborators, M. Ashkenazi et al. have proven to be a robust and interesting way to obtain powerful emergent behavior by utilizing neuromimetic circuitry. Using a physical representation of biologic neurons, both motor (NU) and cortical (NV) these structures mimic simple reflex arcs present in a large number of evolved organisms. The simple circuits using logic gate oscillators wired as integrators or pulse delay loops with sensors coupled as current injectors or variable resistors of different types demonstrated unexpected emergent „survival” behaviors when connected in chains or loops of several neurons. Mark Tilden calls the simplest functional unit of such looped structures „bicores”-as two neurons linked together in a loop already generate meaningful behavior when their inputs are linked to appropriate sensors. These powerful neuromimetic machines allow for a robust implementation of automated responses in autonomous or semi-autonomous robots. Quadcopters are a very good target for neural network control/stabilization because of their unique flight dynamics and normal control procedures. Obstacle avoidance and stabilization are simple tasks for a well-tuned physical neural network.

Publisher

INCAS - National Institute for Aerospace Research Elie Carafoli

Subject

Aerospace Engineering,Control and Systems Engineering

Reference8 articles.

1. [1] M. Khan, Quadcopter Flight Dynamics, International Journal of Scientific &Technology Research, Vol. 3, Iss. 9, August 2014, ISSN 2277-8616.

2. [2] B. Hasslacher, M. Tilden, Theoretical Foundations of Nervous Networks, Applied Nonlinear Dynamics and Stochastic Systems Near the Millennium, AIP Conference Proceedings, volume 411, p. 179-184, May 1997, DOI 10.1063/1.54209

3. [3] B. Hasslacher, M. Tilden, Living Machines, Los Alamos National Laboratory, USA, NM87545, June 1994. Retrieved by Google, 1.05. 2021.

4. [4] T. Anderson, M. Donath, Animal Behavior as Paradigm for Developing Robot Autonomy, Elsevier, P145-186.

5. [5] R. Arkin, Integrating Behavioral, Perceptual, and World Knowledge, Robotics and Autonomous Systems, vol 6/1990, p 105-122.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3