Comparative study on two-constant-amplitude input shapers to maneuver flexible satellite in small structural deflection

Author:

PARMAN Setyamartana1,MACHMUDAH Affiani2,MINH Vu Trieu3

Affiliation:

1. Fakulti Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Melaka, Malaysia, setyamartana@utem.edu.my

2. Faculty of Advanced Technology and Multidiscipline, Kampus C Jalan Mulyorejo, Universitas Airlangga, Surabaya 60115, Indonesia and Research Center for Hydrodynamics Technology, National Research and Innovation Agency (BRIN), Jl. Hidro Dinamika, Keputih, Sukolilo, Surabaya 60112, Indonesia, affiani.machmudah@ftmm.unair.ac.id

3. Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic, vutrieuminh@gmail.com

Abstract

The satellite attitude maneuver using thrusters is studied in this paper. The satellite consists of a rigid main body and two symmetrical solar panels that are so large that their flexibility cannot be neglected. The finite element method is used to discretize the elastic motion of the solar panels. The solar panels are modeled as a set of rectangular plate elements and only out-of-plane displacement is taken into account. The satellite is controlled by a thruster in its main body, while there are no other control inputs on the solar panels. For the attitude maneuver, the roll, pitch and yaw torques generated by the on-off thruster are used and here can produce two different constant amplitudes. Then two types of fuel-efficient input shaping are formulated and applied to perform satellite attitude correction. The first type of input LHHL is preceded by the use of a small amplitude torque followed by a large amplitude one, while the sequence of torque applied to the second type of input HLLH is the opposite of the first input. The two types of inputs are applied separately to the same satellite. They managed to dampen the residual vibrations after reaching the desired attitude, but in achieving this condition the solar panels experienced considerable deflection during the transient response. Due to this, the effectiveness of the shaped inputs for maneuvering the satellites at small structural deflections of the solar panels during their transient responses is compared. The simulation results show that the use of the LHHL input shaper can minimize the structural deflection that occurs in the transient response during the satellite attitude maneuvering process.

Publisher

INCAS - National Institute for Aerospace Research Elie Carafoli

Subject

Aerospace Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3