Automatic approach procedure of a flying vehicle on a mobile platform using backstepping controller

Author:

COSTACHE Florin1,NICHIFOR Sandra-Elena2,COSTEA Mihaela-Luminita3,IONITA Achim4

Affiliation:

1. INCAS – National Institute for Aerospace Research “Elie Carafoli”, B-dul Iuliu Maniu 220, Bucharest 061126, Romania, costache.florin@incas.ro

2. INCAS – National Institute for Aerospace Research “Elie Carafoli”, B-dul Iuliu Maniu 220, Bucharest 061126, Romania, nichifor.sandra@incas.ro

3. INCAS – National Institute for Aerospace Research “Elie Carafoli”, B-dul Iuliu Maniu 220, Bucharest 061126, Romania, costea.mihaela@incas.ro

4. INCAS – National Institute for Aerospace Research “Elie Carafoli”, B-dul Iuliu Maniu 220, Bucharest 061126, Romania, ionita.achim@incas.ro

Abstract

This paper presents the automatic approach procedure of a flying vehicle, attached to an ABB 7600 robot, and a mobile platform, attached to a Stewart platform. Due to a nonlinear dynamic behavior, it is necessary to implement complex control, stabilization and guidance schemes. The proposed solution for this system includes the development of an algorithm based on a backstepping control method, the controller design methodology being based on Lyapunov's stability theory. The proposed command law requires that the states are known, but it is also necessary to introduce a series of state estimators. Tracking a mobile platform is critical in surveillance, reconnaissance and tracking missions, with the control methodology defining a clear distinction between translational and rotational dynamics. The proposed algorithm is developed by separating two types of states involving an inverse kinematics, known as algebraic kinematics, in which the dynamic movements of the two pieces of equipment are used. The dynamics of the ABB 7600 robot involves a movement with seven degrees of freedom, while the Stewart platform can be used with a movement of six degrees of freedom. The proposed algorithm is implemented in both Matlab software and experimental testing. This paper provides results in terms of generating dynamics for both devices that can be used for simulating different scenarios of aerospace missions.

Publisher

INCAS - National Institute for Aerospace Research Elie Carafoli

Subject

Aerospace Engineering,Control and Systems Engineering

Reference8 articles.

1. [1] N. Apostolescu, M. L. Costea, F. Costache, A. Lungoci and S. E. Nichifor, FAZA nr. 1: Analiza sistem de control autonom vehicule aerospatiale, INCAS Bucuresti, Bucuresti, 2020.

2. [2] R. Bogățeanu, N. Apostolescu, F. Costache, A. Lungoci, S. E. Nichifor, A. Burghiu, D. Vișan and M. L. Costea, FAZA nr. 2: Modelare sistem de control autonom vehicule aerospatiale, INCAS Bucuresti, Bucuresti, 2021.

3. [3] R. Bogateanu, A. Lungoci, S. Nichifor, N. Apostolescu and M. Costea, Proiect de ansamblu demonstrator tehnologic ALAMOPLAT (software/hardware) elemente hardware-senzori si componente, INCAS Bucuresti, Bucuresti, 2020.

4. [4] * * * INCAS, Proiect Demonstrator tehnologic pentru controlul autonom al aterizării pe platforme mobile – ALAMOPLAT, Contract nr. 8N/07.02.2019 Cod Proiect: PN 19 01 02 04, Bucuresti: INCAS, 2018.

5. [5] * * * INCAS, Platforme UAV (Vehicule Aeriene fără Pilot) cu capabilități dedicate și infrastructură suport pentru aplicații în misiuni de securitate națională, INCAS București, București, 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3