Study of crankshaft torsional deformation under steady-state and transient operation of turbocharged diesel engines

Author:

Giakoumis E G1,Rakopoulos C D1,Dimaratos A M1

Affiliation:

1. Department of Thermal Engineering, School of Mechanical Engineering, National Technical University of Athens, Athens, Greece

Abstract

The modelling of transient operation of turbocharged diesel engines appeared in the early 1970s, and continues to be in the focal point of research due to the importance of transient response in the everyday operating conditions of engines. The majority of studies have focused so far on thermodynamics, as this directly affects heat release predictions and consequently performance and pollutants emissions. On the other hand, issues concerning the dynamics of engine operation are often disregarded or over-simplified. In the present work, an experimentally validated diesel engine simulation code is used to study and evaluate the importance of a notable engine dynamic issue, i.e. the crankshaft torsional (angular) deformations during turbocharged diesel engine operation owing to the difference between instantaneous engine and load (resistance) torques. The analysis aims ultimately in studying the phenomena under the very demanding, and often critical, transient operating conditions. Detailed crankshaft angular momentum equilibrium is formulated that takes into account instantaneous gas, inertia, friction, load as well as stiffness, and damping torque contributions. Details are provided concerning the underlying mechanism of the crankshaft torsional deformations during steady-state and transient operation. This deformation can assume significant values depending on the engine-load configuration (load change, crankshaft stiffness, kind of aspiration of the engine), and as such it is of great importance for safe engine operation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3