Newtonian mechanics in scale of minutia

Author:

Teodorescu M1,Rahnejat H2

Affiliation:

1. School of Engineering, Cranfield University, Cranfield, UK

2. Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK

Abstract

This article commemorates Newton's contributions to mechanics in small scale. In particular, it deals with Newtonian slow viscous action of fluids in narrow conjunctions leading to hydrodynamics. It is shown that the Newtonian continuum relies on some bulk properties of fluids as opposed to their molecular interactions. When the latter and surface energy effects become dominant, the interaction potentials deviate from the Newtonian continuum. A plethora of largely empirically based force laws are used to describe conjunctional behaviours in nanoscale, usually lightly loaded. Some of these force laws are described, and their applicability to nanoconjunctions of very small devices and some biological systems is noted. In general, a thorough understanding of all the involved kinetics is required. Representative problems in soft nanoscale contacts in normal (humid) atmosphere are highlighted in the article. It is shown that contact load/adhesion depends on several key parameters including surface roughness, surface free energy, atmospheric moisture, and normal approach velocity.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of surface topography upon micro-impact dynamics;Surface Topography: Metrology and Properties;2015-11-05

2. Nanoscale friction as a function of activation energies;Surface Topography: Metrology and Properties;2015-10-06

3. Manipulation with atomic force microscopy: DNA and yeast micro/nanoparticles in biological environments;Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics;2014-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3