Sliding wear performance of high-velocity oxy-fuel spray Al2O3/TiO2 and Cr2O3 coatings

Author:

Singh H1,Grewal M S1,Sekhon H S1,Rao R G2

Affiliation:

1. Mechanical Engineering Department, BBSB Engineering College, Fatehgarh Sahib, Punjab, India

2. Metallizing Equipment Company Private Limited, Jodhpur, Rajasthan, India

Abstract

High-velocity oxy-fuel (HVOF) spray ceramic oxide coatings have immense potential in industrial applications. However, they are not widely used yet due to the lack of an adequate scientific database created after testing these coatings for specific industrial applications. Two such ceramic coating powders, Al2O3+(40%)TiO2 and Cr2O3, were deposited on AISI 309 SS stainless steel by the HVOF spray technique, in order to enhance its wear resistance. This stainless steel is used in many components of thermal power plants in India, where it suffers one or more types of wear. The as-sprayed coatings were characterized by XRD and SEM analyses. Subsequently, the sliding wear behaviours of the uncoated, HVOF spray Al2O3+(40%)TiO2 and Cr2O3 coated AISI 309 SS were investigated according to ASTM standard G99-03 on a pin-on-disc wear test rig. Cumulative wear rate and coefficient of friction (μ) were calculated for the coated as well as the uncoated specimens for 30, 50, and 70 N normal loads at a constant sliding velocity of 1 m/s. Some of the worn-out surfaces were characterized by SEM analysis. Both the as-sprayed coatings exhibited typical splat morphology of a thermal spray process. The XRD analysis indicated the formation of Al2O3 and TiO2 phases for the Al2O3+(40%)TiO2 coating, and Cr2O3 phase for the Cr2O3 coating. It has been concluded that HVOF spray Al2O3+(40%)TiO2 and Cr2O3 coatings can be useful in minimizing the wear problem of AISI 309 SS. These coatings were found to be successful in retaining their surface contact with the substrate after the wear tests. The HVOF spray Cr2O3 coating can be recommended as a slightly better choice to reduce the wear of AISI 309 SS in comparison with the Al2O3+(40%)TiO2 coating.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3