Modelling of loss mechanisms in a pushing metal V-belt continuously variable transmission. Part 3: Belt slip losses

Author:

Akehurst S1,Vaughan N D2,Parker D A1,Simner D3

Affiliation:

1. University of Bath, Department of Mechanical Engineering Bath, UK

2. Cranfield University, Department of Automotive, Mechanical and Structures Engineering Cranfield, UK

3. Cranfield University (RMCS Shrivenham), Engineering Systems Department Swindon, UK

Abstract

The power transmission efficiency of continuously variable transmissions (CVTs) based on the pushing metal belt is acknowledged to be lower than that of discrete ratio alternatives. This tends to negate the potential fuel economy benefits that are obtained by improved engine/load matching with a CVT. This series of three papers details an investigation into the loss mechanisms that occur within the belt drive as a first step to obtaining improvements in efficiency. This third paper follows on from two previous papers in which an analysis was performed modelling the torque losses that occur due to relative motion between the bands and segments of the belt, and between the pulleys and the belt due to pulley deflection effects. It describes additional experimental work, measuring the belt-slip speed tangentially about both of the pulleys in the variator. Additional loss models are proposed beyond those discussed in Parts 1 and 2 to describe the belt-slip phenomena, based on existing theory proposed by others. The analysis produced in this paper is validated against a range of experimental data and additionally through its close interaction with the torque-loss and torque-force distribution models proposed in Parts 1 and 2. The work takes into account new findings in other research and changes in the design of the current metal V-belt.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3