Non-linear dynamic response structural optimization of an automobile frontal structure using equivalent static loads

Author:

Jeong S-B1,Yoon S1,Xu S2,Park G-J3

Affiliation:

1. Department of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea

2. Vehicle Architecture Optimization, Virtual Vehicle Development, General Motors Corporation, Warren, Michigan, USA

3. Department of Mechanical Engineering, Hanyang University, Ansan City, Republic of Korea

Abstract

Although the capability of the computer has been developed and numerical algorithms have been advanced, automobile crash optimization is still quite difficult owing to high non-linearity and numerical cost. Therefore, metamodel-based optimization methods have been frequently utilized in crashworthiness optimization. However, the methods have various limits on the number of design variables and precision. The equivalent-static-loads (ESLs) method has been proposed to overcome the limitations. ESLs are static loads which generate the same displacement field in static analysis as the displacement field at each time step in non-linear dynamic analysis; they are used as the external loads for linear static response optimization. The results of linear static response optimization are utilized to update the design, and non-linear dynamic analysis is performed again with the updated design. The process proceeds in an iterative manner until the convergence criteria are satisfied. From various research studies on the ESLs method, it has been demonstrated that the ESLs method is fairly useful. An automobile frontal structure is optimized for the pendulum test. The optimization problem is formulated with many design variables including displacement, velocity, and acceleration constraints. A method is proposed for handling the velocity and acceleration constraints by using the finite difference method. In a numerical analysis of the pendulum test, the velocity and acceleration are extremely non-linear and noisy. Thus, a filtering technique is utilized for the displacement, velocity, and acceleration curves. LS-DYNA is used for non-linear dynamic analysis, and NASTRAN is used for linear static response optimization and generation of ESLs. The SAE 60 filter in LS-PRE/POST is used to filter the displacement response. A program is developed for interfacing the two systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3