Motorcycle-to-car and scooter-to-car collisions: speed estimation from permanent deformation

Author:

Wood D P1,Glynn C1,Walsh D2

Affiliation:

1. Denis Wood Associates, Dublin, Ireland

2. Dr J H Burgoyne & Partners LLP, Stevenage, UK

Abstract

This paper proposes from fundamental mechanics that the specific energy ( E/ M) absorption characteristics of motorcycles and scooters in frontal impacts are similar where the primary load path is through the front wheel and fork assembly. Examination of 43 barrier test results for 14 different model types of motorcycle and scooter over the impact speed range from 10km/h to 76km/h shows that the specific energy versus wheelbase shortening characteristics are similar and that a single specific collision energy ( E/ M) regression equation with its associated statistical distribution ( r2=0.845) can be used to represent the motorcycle and scooter populations in frontal impact for wheelbase shortening up to 0.45m where the front-fork and front-wheel assemblies remain intact, albeit deformed. Data from 31 staged tests where motorcycles or scooters impacted stationary cars at 90° are used to obtain the energy absorption characteristics of the sides of cars subject to frontal motorcycle or scooter impact. These two regressions are used to estimate collision energy Eca from the permanent deformation or penetration depth of the collision partners, which, when substituted into the standard impact energy loss equation with the appropriate collision partner masses, yields an estimation of collision speed Vccs. This procedure for calculating collision closing speed Vccs is validated against 13 staged tests (six 90° impacts against stationary cars and seven angled impacts at angles up to 45° from the normal, four of which were against moving cars) and shows that the predicted Vccs speeds bound the actual speeds with a standard deviation of 11.2km/h for collision closing speeds up to 122km/h.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The safety of motorcycle users;The Archives of Automotive Engineering – Archiwum Motoryzacji;2023-09-29

2. Motorcycle Crash Tests - Literature Review;Transport and Communications;2022-11-30

3. Motorcycle accident reconstruction: Influence of structural deformation or failure;Engineering Failure Analysis;2020-09

4. Understanding motorcyclist-related accidents in Colombia;International Journal of Injury Control and Safety Promotion;2020-02-11

5. Eleven Instrumented Motorcycle Crash Tests and Development of Updated Motorcycle Impact-Speed Equations;SAE International Journal of Transportation Safety;2019-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3