The effects of soot properties on the regeneration behaviour of wall-flow diesel particulate filters

Author:

Law M C1,Clarke A1,Garner C P1

Affiliation:

1. Loughborough University Wolfson School of Mechanical and Manufacturing Engineering Loughborough, UK

Abstract

In recent years, significant effort has been put into studying the regeneration process of diesel particulate filters (DPFs) either through experiments or modelling. However, less attention is paid to understanding the important influence of soot properties on the regeneration process. In this paper, for the first time, five fundamental soot properties, namely activation energy, frequency factor of the reaction, soot bulk density, porosity and mean soot particulate diameter, are investigated. Sensitivity analyses are carried out for each of these parameters based on a one-dimensional generalized DPF regeneration model. It is found that activation energy is the most important factor in the regeneration process, followed by frequency factor, bulk density, porosity and mean particulate size. In addition, the results also indicate that the concentration of exhaust gas oxygen has a significant influence on the role played by each parameter. This clearly shows the importance of gas diffusion in the regeneration process.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3