Multidisciplinary design optimization of a zero-emission vehicle chassis considering crashworthiness and hydroformability

Author:

Cristello Nick1,Kim Il Yong1

Affiliation:

1. Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada

Abstract

This research used multidisciplinary design optimization to optimize the ladder frame chassis of a zero-emission vehicle by simultaneously considering three objective functions: (a) chassis mass, (b) deceleration during collision, and (c) manufacturability of a part in hydroforming. Additionally, design constraints were placed on torsional and bending stiffness, maximum von-Mises stress, and the natural frequency in torsion and bending. Optimization was completed in a three-phase approach: phase one used a simplified chassis model to conduct topology optimization with genetic algorithms; phase two was conducted to determine an optimum cross-sectional type and shape; and phase three incorporated results from phases one and two, into a high-fidelity, three-dimensional chassis model, for gradient-based optimization. Results from all phases of the design optimization indicated that improvements could be made over the baseline configuration. Through examination of Pareto frontiers in phase three, distinct trade-offs were identified between all objective functions: a 5 per cent reduction in chassis mass was required to maximize hydroformability; to minimize mass required a 90 per cent increase in deceleration; and minimization of deceleration required an 18 per cent decrease in hydroformability. Tri-objective optimization was used to generate a three-dimensional Pareto frontier ‘surface’ to show the impact of one objective function on all others simultaneously.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3