Heat transfer and chemical kinetics in the exhaust system of a cold-start engine fitted with a three-way catalytic converter

Author:

Chan S. H.1,Hoang D. L.1,Zhou P. L.2

Affiliation:

1. Nanyang Technological University School of Mechanical and Production Engineering Singapore

2. University of Newcastle upon Tyne Department of Marine Technology UK

Abstract

Modelling of cold-start engine exhaust behaviour is a difficult task as it involves complicated heat transfer processes associated with water condensation and evaporation at the walls of the exhaust manifold/pipe and monolith cells, and the chemical reactions of CO/HC/NO in the three-way catalytic converter. This paper presents a model that is capable of predicting the exhaust gas temperatures along the exhaust system and across the catalyst monolith, both spatially and temporally, from the moment when the engine is cranked. The conversions of CO/HC/NO to harmless carbon dioxide, water and nitrogen at the catalytic converter downstream have been validated satisfactorily by the experimental data. The distortion of measured NO emission data/signals due to the dynamic behaviour of the chemiluminescence analyser has been reconstructed by means of a signal inference technique before these signals were used to validate the predictive capability of the model developed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3