Computational fluid dynamics simulation of in-cylinder flows in a motored homogeneous charge compression ignition engine cylinder with variable negative valve overlapping

Author:

Mahrous A-F M1,Wyszynski M L1,Wilson T2,Xu H-M1

Affiliation:

1. Department of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham, UK

2. Jaguar Land Rover Research, Coventry, UK

Abstract

In-cylinder air motion is one of the most important factors that control the degree of mixture preparation and thus is fundamental to improvements in the combustion process and overall engine performance. The major aim of this paper is to elucidate, through a predictive study, the main features of in-cylinder flow fields in a motored homogeneous charge compression ignition (HCCI) engine cylinder with variable negative valve overlapping (NVO). A commercial finite-volume computational fluid dynamics (CFD) package was used in the programme of simulation. The computational model was validated through a qualitative comparison between CFD results and the available experimental data. Thus one of the main developments presented in this study is the investigation of the intake process of the HCCI engine with various valve strategies, and it is perhaps the first time (to the current authors' best knowledge) that a direct comparison has been made of the results obtained in the same HCCI NVO motored engine using modelling and experimental approaches. The comparison illustrated a fair agreement between both sets of results, with some differences. A parametric predictive study of the effects of variable valve timings on the in-cylinder air motion has then been carried out. Three different sets of valve timings have been applied to the intake and exhaust valves to generate NVO of 70, 90, and 110 degrees of crank angle (°CA). The NVO was controlled by adjusting the times of exhaust valves closing (EVC) and intake valves opening (IVO) while keeping the times of exhaust valves opening (EVO) and intake valves closing (IVC) unchanged. The predicted results show a noticeable modification of the strength and the global direction of the in-cylinder charge motion as a result of increasing the magnitude of NVO. Modifications of in-cylinder swirl and tumble motions obtained by applying higher degrees of NVO are expected to have a considerable effect on the air-fuel mixture preparation process as well as the actual in-cylinder conditions at the end of the compression stroke.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3