Analysis of the properties of a steering shaft used as a back-up for a steer-by-wire system during system failure

Author:

Hussain K1,Baharom M1,Day A1

Affiliation:

1. School of Engineering Design and Technology, University of Bradford, Bradford, UK

Abstract

An analysis is presented to determine the best selection criteria for the properties of a steering shaft to be used as a back-up apparatus for a steer-by-wire (SBW) system during system failure. The properties of interest are the steering-shaft stiffness and its damping coefficient. A mathematical model representing the failed state of an SBW system is derived, and a set of experiments to validate the model is presented. Once the model had been validated, further predictions of the car's handling behaviour for a range of steering-shaft properties and different road speeds were completed by simulations in MATLAB/Simulink. A minimum stiffness which did not cause the car to become unstable owing to overshoot was determined, and the minimum acceptable damping coefficient value was derived. It is concluded that the suggested stiffness and damping coefficient values increased the steering ratio, and the results of further investigations are presented, which confirm that the vehicle is safe to be driven in the event of SBW system failure if the recommended shaft properties are used.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Mixed L1/H2 Robust Observer With An Application To Driver Steering Torque Estimation for Autopilot-Human Shared Steering;Journal of Dynamic Systems, Measurement, and Control;2022-04-28

2. Design of full electric power steering with enhanced performance over that of hydraulic power-assisted steering;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2013-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3