Optimization of a high-speed direct-injection diesel engine at low-load operation using computational fluid dynamics with detailed chemistry and a multi-objective genetic algorithm

Author:

Ge H-W1,Shi Y1,Reitz R D1,Willems W2

Affiliation:

1. Engine Research Center, University of Wisconsin-Madison, Wisconsin, USA

2. Diesel Powertrain Research and Advanced Engineering, Ford Research Centre, Aachen, Germany

Abstract

A passenger car high-speed direct-injection diesel engine operating at low-load conditions in the modulated kinetic combustion mode was optimized using a multi-dimensional computational fluid dynamics code and a multi-objective genetic algorithm. Spray targeting, piston bowl geometry, and swirl ratio were optimized. Since the combustion is mainly kinetics controlled, detailed chemistry was considered through a recently developed adaptive multi-grid chemistry (AMC) model. The numerical results from the AMC model, including the pressure and pollutant emissions, were first validated on the baseline engine for a parametric sweep by comparison with the results from the standard KIVA—CHEMKIN model. The AMC model was found to give consistent results with the KIVA—CHEMKIN model, with a computational cost that is less than half that of the KIVA—CHEMKIN model. Optimal designs from the optimization were also validated using the full KIVA—CHEMKIN model and were found to reduce the fuel consumption and/or pollutant emissions. Start-of-injection timing was found to be the primary parameter influencing the fuel consumption and soot emissions for the engine operating in the low-load condition. Later injection benefits the fuel consumption and soot reduction. However, further retardation of the injection timing leads to reduced combustion efficiency and even misfire, and results in higher unburned hydrocarbon emissions. Different piston bowl shapes have different responses to bulk flow motions and the resulting geometry-generated turbulence will affect soot formation and oxidation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3