Study of diesel-fuelled homogeneous charge compression ignition combustion by in-cylinder early fuel injection and negative valve overlap

Author:

Shi L1,Deng K1,Cui Y1

Affiliation:

1. School of Mechanical and Power Engineering, Institute of Internal Combustion Engine, Shanghai Jiaotong University, Shanghai, People's Republic of China

Abstract

This paper presents a scheme to achieve diesel-fuelled homogeneous charge compression ignition (HCCI) combustion, which is to inject diesel fuel directly into the cylinder at near intake top dead centre and adjust the valve overlap to obtain a higher internal exhaust gas recirculation (EGR) in the cylinder. The effects of the engine load, speed, inlet temperature, external EGR, and internal EGR on HCCI combustion and emission were studied. The combustion stability of HCCI combustion was also studied by statistics analysis. The results show the following: when the engine load or inlet temperature increases, which results in a higher in-cylinder temperature, the start of combustion (SOC) is advanced; the ignition time of HCCI relative to the engine crank angle is retarded when the engine speed increases; inert gases contained in the EGR can slow the chemical reaction rate, which can delay the auto ignition time; for the diesel-fuelled HCCI, increasing the negative valve overlap (NVO) makes the SOC advanced and makes the combustion stability better at low loads and worse at high loads. The emission results show that the nitrogen oxides (NOx) and smoke emissions are very low, and a large NVO can decrease the smoke emission but not benefit the NOx emission at high loads for diesel-fuelled HCCI combustion.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference1 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3