Exhaust emissions and energy release rates from a controlled spark ignition engine using ethanol blends

Author:

Varde K1,Jones A1,Knutsen A1,Mertz D1,Yu P1

Affiliation:

1. College of Engineering and Computer Science, The University of Michigan-Dearborn, Dearborn, Michigan, USA

Abstract

Although alcohols have been considered and used as fuels for internal combustion engines for decades, their use in automotive transportation systems has been rather limited. In the past few years, ethanol has received varying amounts of attention in the United States owing to the increasing cost of gasoline fuel and legislative mandates in some states requiring the sale of alcohol-blended gasoline for light-duty vehicles. This may, in the end, help the agricultural economy in the United States. If alcohol blends are to be used in spark ignition (SI) engines designed to operate on gasoline, then it is important that engines be tuned for the fuel that is being utilized at that instant. This requires knowledge of the combustion characteristics of alcohol blends so that the engine control system can make appropriate changes according to the quality of the blend. The present investigation was conducted to evaluate the combustion and exhaust emissions characteristics of ethanol-gasoline blends in a two-valve automotive SI engine. Ethanol blends improved the specific energy consumption relative to pure gasoline fuel. At stoichiometric air-fuel ratio, the alcohol blends improved exhaust CO emissions marginally. However, there were consistent reductions in NO x levels, particularly with the E-85 blend. The use of E-85 in the engine also resulted in a reduction in HC levels relative to neat gasoline, but E-85 produced significantly higher levels of acetaldehydes by comparison with neat gasoline and lower ethanol blends, particularly at lighter engine loads. The E-85 blend required a longer time to develop and set up the flame in the combustion chamber relative to neat gasoline. This was particularly true at lower engine loads, probably owing to cooling effects of the inducted charge. However, the rapid combustion duration did not exhibit much difference between the blends and gasoline.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference8 articles.

1. Potential Production of Agriculturally Produced Fuels

2. Turns S. R. An introduction to combustion - concepts and applications, 2000, pp. 32–51 (McGraw-Hill, New York).

3. Aldehydes and Ketones in Engine Exhaust Emissions—a Review

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3