Turbocharger motor-generator for improvement of transient performance in an internal combustion engine

Author:

Panting J.1,Pullen K. R.1,Martinez-Botas R. F.1

Affiliation:

1. Technology and Medicine Department of Mechanical Engineering, Imperial College of Science London, UK

Abstract

Turbocharging of internal combustion engines is an established technology used for the purpose of increasing both power density and in some cases the cycle efficiency of diesel engines relative to naturally aspirated engines. However, one significant drawback is the inability to match the characteristics of the turbocharger to the engine under full load and also to provide sufficiently good transient response. Under many conditions this results in reduced efficiency and leads to higher exhaust emissions. The design of turbocharger components must be compromised in order to minimize these drawbacks throughout the entire operating range. However, when shaft power can be either added to or subtracted from the turbocharger shaft by means of a direct drive motor-generator, an additional degree of freedom is available to the designer to achieve a better turbocharger-engine matching. Both engine efficiency and transient response can be significantly improved by means of this method, normally described as hybrid turbocharging. This paper describes the results of a theoretical study of the benefits of hybrid turbocharging over a basic turbocharged engine in both steady state and transient operation. The new system and its benefits are described and four different engine-turbocharger systems are analysed in addition to the baseline engine. The main conclusion of the paper is that a significant increase in design point cycle efficiency can be afforded by re-matching the turbocharger components under steady state conditions while at the same time improving full throttle transient performance. Emissions are not considered in this paper.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference6 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3