Affiliation:
1. University college Dublin Department of Mechanical Engineering Dublin, Ireland
2. CMT-Motores Térmicos, Universidad Politécnica de Valencia Spain
Abstract
Continued legislative pressure to reduce NO x emissions from diesel engine combustion systems generates a desire for cycle-by-cycle emissions data, with a view to their use in a feedback control strategy, perhaps in conjunction with an exhaust catalytic reactor. While NO x sensors that provide fast, robust, reliable, and continuous measurements in a diesel exhaust at a reasonable price are currently the subject of much development, the present work focuses on an indirect approach. This has led to the development of a semi-empirical model that can be used to estimate NO x emissions, based on more easily measured input data, primarily in the form of instantaneous in-cylinder pressure as a function of crank angle. The model computations are based on fundamental thermodynamic principles, but key empirical constants have been derived with the aid of statistical techniques. The approach taken relied on the availability of an extensive bank of experimental data from three different designs of direct injection diesel engine, each utilizing common rail type fuel injection systems and, in some cases, with the use of multiple injections per cycle.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献